Today’s Agenda

• Introductions
 – TEN TECH LLC Services & Solutions
 – MSC Software, MSC One & MSC Apex

• CubeSat Validation with MSC Apex
 – Mechanical Specifications
 – Finite Element Modeling & Analysis

• Closing Remarks
 – MSC Apex
 – Extension to MSC One
INTRODUCTIONS
TEN TECH LLC & MSC Apex

"TEN TECH LLC assists Aerospace & Defense companies in designing better, safer products faster and at a reduced cost."
William VILLERS

• Co-Founder, CTO & Director of TEN TECH LLC
 – Manage Technical Aspects of the Company
 – Project Management & Customer Relations
 – Analysis Team Management

• Seasoned Aerospace & Defense Professional
 – MSME & ABD Doctor of Engineering, MIT France
 – 25 years of Industry Experience in EU & US
 • Engineering & Engineering Management
 • Eurocopter, Aerospatiale, EDS
TEN TECH LLC Services & Solutions

• Aerospace & Defense Design, Test & Analysis Consultants
 – ITAR-Registered Woman Owned Small Business
 – Cage Code Holder, Active DD-2345 DoD Certification
 – Offices in Los Angeles, CA and Billerica, MA

• Modeling & Simulation Subject Matter Experts
 – Rugged Electronics, RF & Microwave Components
 – Structural Dynamics, Shock & Vibration
 – Thermal Design & Electronics Cooling
Expertise & Industry Distribution

- Naval: 20%
- Medical: 1%
- Energy: 1%
- Industrial: 3%
- Transportation: 1%
- Space: 7%
- CP&R: 2%
- Defense Electronics: 65%
- Shock & Vibration: 65%
- Thermal & CFD: 17%
- Vibro-Acoustics: 1%
- Stress: 13%
- CAE Training: 3%
- Test Planning: 1%
MSC Software

- Worldwide Leader in Multi-discipline Simulation Software
 - One of the 10 Original Software Companies
 - Awarded the Original NASA Nastran Contract in 1965

- Vast Portfolio of Industry-Standard Solvers
 - Nastran, Adams, Marc, Sinda, Actran

- Redefining CAE Process with MSC Apex
 - World’s First Computational Parts Based CAE System
 - High-performance Meshers & Integrated Structural Solver
MSC Apex CAE Platform

- Easy to Learn, Easy to Use
 - Achieve Proficiency in Hours vs. Weeks

- CAE-specific Direct Modeling & Meshing
 - Geometry Abstraction & Simplification
 - High-performance Mesher

- Integrated & Generative Solver
 - Incremental Solver Methods
 - Computational Parts & Assemblies
Structural Analysis with Computational Parts

- **Analysis Results Stored at Part Level**
 - Allows for Incremental Model Validation
 - Speeds Up Assembly Analysis
 - Assembly of Results vs Results of Assembly
 - Speeds Up Design Changes Reanalysis
 - Only Changes are Processed
 - Faster Matrix Reassembly

- **Average 2.5x Faster than First Solve**
 - Often 10x depending on the solution
CubeSat Analysis with MSC Apex
Requirements, Environments, Finite Element Analysis
CubeSat Standard Design & Qualification

- Cal-Poly SLO CubeSat Design Specification
 - Mechanical, Electrical, Operational Requirements
 - Protoflight & Acceptance Testing Requirements

- NASA Goddard Space Flight Center GSFC-STD-7000
 - General Environmental Verification Standard
 - Modal Survey, Structural Loads, Sine Vibration, Shock
CAD Geometry As Analysis Starting Point

- Direct Import of Native CAD Assembly
 - SolidWorks, CATIA, NX, Pro/E,…
 - Retention of Product Structure
 - Geometry, Positioning

- Feature Suppression & Abstraction
 - Removal of Small Feature
 - Direct Modeling Operations
Mesh Creation

- **Automated TET & Brick Meshing**
 - Detailed Modeling of Electronics

- **Disjoint Meshes Connections**
 - Nastran Glue Joint

- **Semi-Automatic Fastener Connections**
 - Rigid & Beams Combination
 - Recovery of Fastener Loads
Modal Survey

• Classic Modal Analysis
 – Rigid Body Modes
 – Constrained Modes
 – Range of Interest [0,2000Hz]

• Dynamics Characterization
 – Resonant Frequencies
 – Dominant Modes
 – Mass Participation Factors

\[
\Gamma_n = \frac{I_n}{M_n} = \frac{\{\phi_n\}^T \{m\} \{t\} \{\phi_n\}}{\{\phi_n\}^T \{m\} \{\phi_n\}}
\]
Quasi-Static Acceleration Analysis

- Acceleration Equivalence to Shock & Vibration
 - Conservative, First-pass Evaluation
 - Dependent on Modal Analysis
 - Shock Pulse using Harris Formula
 - Random with Miles’ Equation

\[
A_{eq}(\omega_n, 0) = \frac{1}{g} \left(\frac{2(\omega_n \tau / \pi)}{1 - (\omega_n \tau / \pi)^2} \right) \cos \left(\frac{\omega_n \tau}{2} \right) \\
A_{eq}^\pm(\omega_n, 0) = \frac{1}{g} \left(\frac{(\omega_n \tau / \pi)}{(\omega_n \tau / \pi) - 1} \right) \sin \left(\frac{2i\pi}{(\omega_n \tau / \pi) + 1} \right)
\]

\[
\begin{align*}
\omega_n &\leq \frac{\pi}{\tau} \\
\omega_n &> \frac{\pi}{\tau}
\end{align*}
\]
Dynamics Response

- **Modal Analysis + Modal Response**
 - Time & Frequency Domain
 - Modal Truncation & Residual Vectors
 - Modal & Structural Damping
 - Stress Stiffening & Inertia Relief

- **Traditional Response Output**
 - Transmissibility & Transfer Functions
 - Modal Contribution
 - Peak Stress, Displacements, Accelerations, Forces
Bolted Joints Calculations

- NASA-STD-5020 & NASA TM-106943
 - Recovery of Fastener Forces
 - Joint Separation & Slippage
 - Combined Bolt Tension, Shear, Bending
 - Bolts Thread Shear
Electronics Components Vibration Fatigue

- “Steinberg” Approach to Fatigue
 - Based on FEA Board Deflection

\[Z_{3\sigma \text{ limit}} = \frac{0.00022 \times B}{Chr \sqrt{L}} \] (20 million cycles)

- **B**: length of the circuit board edge parallel to the component, inches
- **L**: length of the electronic component, inches
- **h**: circuit board thickness, inches
- **r**: relative position factor for the component mounted on the board
- **C**: Constant for different types of electronic components
 \[0.75 \leq C \leq 2.25 \]
Closing Remarks

Conclusions, Q&A
Conclusions

- **Fast Design Validation with MSC Apex**
 - Fast Model Creation from Native Geometry
 - Good Breath of Structural Analysis Solvers
 - Computational Parts Save A Lot of Time

- **Scalable via MSC One Token System**
 - Reuse of Apex Model for Downstream Applications
 - Nastran Random Vibration Fatigue
 - Sinda/Thermica Orbital Thermal Analysis
 - Actran Vibro-Acoustics Analysis
For More Information

- Website: https://www.tentechllc.com
- Facebook Page: https://www.facebook.com/tentechllc
- YouTube Channel: https://www.youtube.com/user/TenTechLLC
- Twitter Page: https://twitter.com/TENTECHLLC
- LinkedIn Page: https://www.linkedin.com/company/ten-tech-llc